Introduction

Introduction

] COLLABORATORS
TITLE :
Introduction
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Introduction iii

Contents

1 Introduction 1
1.1 Chapter 1 -Introduction L e e e e e 1
1.2 Commonly Used AmigaDOS Words e 1
1.3 Physical Devices e 2
LA Volumes o e e e e 4
1.5 Directories/Subdirectories/Files L e 4
1.6 Logical Devies o e e e 5
1.7 Physical/Logical Devices & Volumes i e e e e e e 6
1.8 DosLibrary e e e 7
1.9 BCPL . . . e 8
1.10 Long Word Aligned Structures ot v vt ittt e e e e e e 9
1.11 BCPL Pointers (BPTR) e e e e e 10
1.12 BCPL Strings (BSTR) 11
1.13 Boolean Values Used by AmigaDOS e 12
1.14 Examples o o e 13

Introduction 1/14

Chapter 1

Introduction

1.1 Chapter 1 - Introduction

Previous Chapter: Next Chapter:
0. Contents

CHAPTER 1 - INTRODUCTION

Commonly Used AmigaDOS Words
Dos Library

BCPL

Boolean Values Used by AmigaDOS

Examples

1.2 Commonly Used AmigaDOS Words

COMMONLY USED AMIGADOS WORDS
Before you can continue with the other chapters you need to
know the meaning of some commonly used words, and how AmigaDOS
work. For more information about AmigaDOS and the Shell see the
manuals which were included with your computer when you bought
it.

Physical Devices

Volumes

Directories/Subdirectories/Files

Introduction

2/14

Logical Devices
Physical/Logical Devices & Volumes

1.3 Physical Devices

PHYSICAL DEVICES

Physical devices are parts of the Amiga to which data can
either be sent to, read from or both. The most commonly used
physical device is undoubtedly the internal disk drive "DFO:",
but there exist a lot of other physical devices.

Here is the list of the standard AmigaDOS physical devices:

DFO: File IO on disk drive O

DF1: File IO on disk drive 0

DF2: File IO on disk drive O

DF3: File IO on disk drive 0

RAM: File I0 on RAM disk

DHx: File IO on hard drive x (DHO, DH1l, DH2, and so on...)
SER: Buffered serial IO

PAR: Buffered parallel IO

PRT: Output to printer (trough Preferences)
CON: Buffered translated window IO

RAW: Unbuffered untranslated window IO

PIPE: Buffered IO between programs
AUX: Unbuffered serial IO
SPEAK: Output to the narrator (speech) device

NIL: Output to nothing

(IO = Input / Output)

(Note that all device-names end with a colon)

(The listed devices are also usually called as "handlers")

If you want to copy a file called "program.c" from the internal
disk drive (DF0:) to the second disk drive (DFl:) you write:

1.Prog:>
1.Prog:> copy from DFO:program.c to DF1:

If you want to print the file you can do it by simply copying
the file to the "PRT:" device. The data in the file will be
translated with help of the current settings in Preferences and
outputed to the printer.

1.Prog:>
1.Prog:> copy from DFO:program.c to PRT:

Introduction

3/14

Since AmigaDOS treats all devices equal you can even let it
read your file out loud with help of the "speak" device. You
only have to copy the file to the "SPEAK:" device, and the
Amiga will immediately start to read the file out loud.

1.Prog:>
1.Prog:> copy from DFO:program.c to SPEAK:

AmigaDOS allows you also to use special windows (CON: or RAW:)
for input/output. The only thing you need to add are some extra
arguments just after the device name. These extra arguments
tells AmigaDOS what size and position of the window you want,
and if you want to use any special options. The syntax for the
console window is:

CON:x/y/width/height/title/option (s)

If you want to use spaces in the title you have to put
quotation marks around the whole expression. With "Release 2"
(WB2.xx) some special options where added to the "CON:" device:

Option Description

/AUTO: Opens the window first when there is some IO

/BACKDROP: Should be a "backdrop" window (no other window can
be moved behind it)

/CLOSE: Add a close window gadget

/NOBORDER: Draw no borders around the window

/NODRAG: Remove the drag gadget

/NOSIZE: Remove the size gadget

/SCREEN: Open on a specified public screen "/SCREEN [name]"

/SIMPLE The window should use "simple refresh" mode
(see Intuition manual for more information)

/SMART : The window should use the "smart refresh" mode
(see Intuition manual for more information)

/WAIT: Waits with closing the window until the user types
"Ctrl-\" or clicks on the close window gadget

/WINDOW : Use the specified window (address in hexadecimal)

"/WINDOW [pointer to window]"

To copy a file called "prg.c" from the current device to a
"CON:" window you simply write:

1.Prog:>
1.Prog:> copy prg.c to CON:10/20/320/100/Text/CLOSE/WAIT/

This will copy the data in the file to a window positioned at

x position 10, y position 20, width 320, height 100, with the
title "Text", and it will be closed first when you click on

the close window gadget which has been added. If you want to
use spaces in the title you need to put quotes around the whole
expression:

1.Prog:>
1.Prog:> copy prg.c to "CON:10/20/320/100/My Text/CLOSE/WAIT/"

Introduction 4/14

All these types of "physical devices" which have been listed
are also sometimes called "handlers". The handler is actually
the process behind the device, and will be fully explained in
the chapter Handlers

1.4 Volumes

VOLUMES

To access a disk you can either use the physical device name of
the drive in which the disk is, or use the name of the disk
(the "volume name"). If you want to copy a file called
"program.c" from the RAM disk to a disk called "DOCUMENTS", and
the disk is in the second disk drive, you can either write:

1.Prog:>
1.Prog:> copy from RAM:program.c to DF1l:

or
1.Prog:>
1.Prog:> copy from RAM:program.c to DOCUMENTS:
(Note the colon after the volume name!) The advantage with the

last example is that you do not need to bother about which
drive the DOCUMENTS disk is in. Furthermore, if the desired
disk was not in any drive, AmigaDOS will ask you to insert it,
and you do not need to worry about writing to the wrong disk.

1.5 Directories/Subdirectories/Files

DIRECTORIES/SUBDIRECTORIES/FILES

On a disk there may exist directories, subdirectories and files.
A subdirectory is a directory inside another directory. (There
may be subdirectories inside other subdirectories and so on...)

Picture: Dir&Sub.pic

If you want to access a file which is in the "current
directory" (the directory you are currently standing in) you
only have to use the file name.

"file name"

If you want to access a file which is in a directory further
in you have to add the directory name, a slash (/) and then
the file name. If the file is several directories in you
have to add the name of each directory and a slash for every
directory (subdirectory).

"directory name"/"file name"

Introduction

5/14

"directory name"/"subdirectory name"/"file name"
and so on...

If you are standing in a directory and want to access a file
which is outside (one step back) you have to put a slash in
front of the file name. If the file is several directories back
you have to add a slash for every directory.

/"file name"
//"file name"
///"file name"
and so on...

If you want to access a file on a specific device or volume you
simply add the volume name, a colon (:) and then the file name.
If the file is inside a directory on that volume you also have

to add the directory name(s) as explained before.

"volume name":"file name"
"volume name":"directory name"/"file name"
"volume name":"directory name"/"sub directory name"/"file name"

and so on...

1.6 Logical Devies

LOGICAL DEVICES

Logical devices is a simple way to find files, regardless of
where the file actually is. For example: If you have all your
C programs on a disk called "Programs", placed in directory
named "Examples", and you want to run the program "testl" you
need to write: ("volume name":"directory name"/"file name")

1.Prog:>
1.Prog:> Programs:Examples/testl

If you often want to access files in that directory you can
assign a "logical device" to it. You then only need to write
the logical device name and the file name, and AmigaDOS will
automatically look on the right disk and directory.
You assign logical devices by using the command "Assign"
which is called like this: (Note the space between the logical
device name and the path.)

Assign "logical device name": [device/ (directory/subdirectory)]

For example:

1.Prog:>
1.Prog:> Assign EX: Programs:Examples

To gain access to the file "testl" you then only need to write:

1.Prog:>

Introduction 6/14

1.Prog:> EX:testl

When you boot up the computer it will automatically create some
commonly used logical devices. A good example is the logical
device "FONTS:". It is automatically assigned to the system
disk’s "fonts" directory. Here is the list of some of the most
commonly used logical devices:

Standard

Logical

Devices Description

SYS: The system disk which was used when the
computer started ("the boot disk")

C: All Shell (CLI) commands can be found here

FONTS: All fonts can be found here

L: All types of (file) handlers are stored here

LIBS: All disk libraries can be found here
[loaded when you call OpenLibrary() .]

St All batch files (files with Shell commands)
are stored here

DEVS: All "devices" (device is a commonly used
word...) can be found here.

and so on...

The logical device "C:" is assigned to the system disk’s "c"

directory, where all CLI commands are. If you have copied some
CLI commands to the RAM disk, and you want AmigaDOS to look
there instead of looking on the system disk’s ¢ directory you
simply reassign the C: device. For example:

1.Prog:>
1.Prog:> Assign C: RAM:

1.7 Physical/Logical Devices & Volumes

PHYSICAL/LOGICAL DEVICES & VOLUMES

To list all physical and logical devices as well as all
currently accessable volumes you can use the "Assign" command.
Simply type "Assign" without any arguments, and you will see
something like this:

1.Prog:>

1.Prog:> Assign
Volumes:

Ram Disk [Mounted]
HD4 [Mounted]

HD3 [Mounted]
HD2 [Mounted]
DH1 [Mounted]
HDO [Mounted]

Introduction

7/14

Directories:

GPFax HDO:GPFax

CProg: HD3:CPrograms

ACE: HD4 :AmigaCEncyclopedia
DOC: HD2 :Documents

BACKUP : HD4 :Backup

REXX HDO:RexxPrograms
CLIPS Ram Disk:Clipboards

T Ram Disk:T

ENV Ram Disk:env

ENVARC HDO:prefs/env-archive
SYS HDO:

C HDO:c

S HDO:s

LIBS HDO:1ibs

DEVS HDO:devs

FONTS HDO:Fonts

L HDO:1

Devices:

PIPE AUX SPEAK RAM CON
RAW SER PAR PRT DHO
DFO DF1 DH1 DH2 DH3

At the top you will see all currently accessable volumes, and
if they are "mounted" (in a drive) or not. Then all logical
devices are listed (called "Directories"), and finally the
physical devices are listed.

1.8 Dos Library

DOS LIBRARY

Before you can access any function in a library you normally
have to open it with help of the OpenLibrary() function. The
AmigaDOS library is however opened automatically for you when
your program is started. You do therefore not need to (nor
should) open or close the dos library yourself as you do with
the other libraries.

There is one thing you must look out for. Although the AmigaDOS

library (the dos library as it is usually called) will have
been opened for you it is not sure that you may use all the

functions described in this manual. Many of the functions were

first included with Release 2, and only exist in dos library
version 36 or higher. If you try to use a new function on an
old Amiga the system will crash!

If you use any of the new functions you must first check that
the user really has the needed library version or higher.

If the user does not have the needed library version your
program must immediately tell the user that he/she has a too
old dos library, and then immediately terminate, or at least
not use the new functions.

Introduction 8/14

Whenever I describe a function I will always tell you when the
function was first included in the library. For example, when
you see the sign "V36+" it means that the function may only be
used if the user has version 36 or higher. If you see the text
"All versions" it means that the function can be used with any
version of that library.

Normally when you open a library you can tell the Amiga what is
the lowest library version you accept. The question is now how
you can check the version number of the dos library if it is
already open. The answer is simple. You only have to declare
the global dos library pointer as an external pointer, and it
will automatically be initialized for you. The library pointer
must be called "DOSBase". Here is an example: (Simply include
this line at the beginning of your code, and the rest will be
done automatically for you.)

extern struct DosLibrary xDOSBase;

Once you have a pointer to the dos library you can check the
current version number. The version number is found in the
"lib_Version" field of the DosLibrary structure. (See header
file "dos/dosextens.h" for a complete description of the
DosLibrary structure.)

/* We need dos library version 36 or higher: x/
if (DOSBase->dl_1lib.lib_Version < 36)
printf("The dos library is too old!\n");
else
printf ("The user has the new functions in Release 2!\n");

Once you are sure that the user has the needed version or

higher you can start to use the new functions.

See Example 1 for more information: Read! Run! Edit!
KA AN A A A A AR A AR A A AR A Ak A A A A A A A A AR A A A A A A A A AR A A Ak A Ak A Ak hA Ak ko k)
* *
* REMEMBER! If you use any function which has been marked =«
* as a new function (V36, V37, V39, Vv38...) you MUST *
* check that the user really has the needed library *
* *
* *
* *

version or higher!

LR R i I S I S I I I I S I S I I I I b b S R I e b I b b I S b I b I b I b b i b b I S I b 2h

1.9 BCPL

BCPL

AmigaDOS was not, as everything else on the Amiga, written in

C. Instead they used the BCPL programming language which is the
predecessor of C. As new dos library versions are released more
and more of the old BCPL language 1is removed. There are however

Introduction 9/14

still some parts left which can not be taken away due to
compatibility problems.

The reason why you need to know about this BCPL is because the

language only used the data type "long word" ("LONG"). The
problem is that all BCPL data must therefore be "long word
aligned" - the data must start on an even word address (on

a four byte boundary) .

When you normally declare a structure the memory which is
reserved can start on any byte address. If you would try to use
such a structure together with BCPL there would be a lot of
problems since BCPL would not be able to address it (use it).

See picture LongWordAligned.pic . You can there see an
illustration of a small part of the memory in the Amiga. The
first byte you see has the address 0x7D00 (7D00 HEX = 32000 DEC) .
This byte is located on a "long word boundary" since it can be
divided by 4 (4 bytes = 1 long word). Any structure that starts
on such an address can be accessed by BCPL.

Structure 1 starts on byte 0x7D00 and is therefore long word
aligned and can be accessed by BCPL. However, structures 2, 3,
and 4 can not be used by BCPL since they start in the middle of
a long address. Structure 5 is OK since it starts on

address 0x7D04 which can be divided by 4, and so on...

Long Word Aligned Structures
BCPL Pointers (BPTR)

BCPL Strings (BSTR)

1.10 Long Word Aligned Structures

LONG WORD ALIGNED STRUCTURES

To make sure that a structure really starts on a long word
address (even word address = on four byte boundary) you have to
allocate the memory yourself with help of AllocMem(). (Remember
to deallocate the memory once you do not need it any more!)

Some new special structures with dos library version 36 or
higher should be allocated with the AllocDosObject () function.
These structures will also be long word aligned. When you need
to use AllocDosObject () will be described in the following
chapters.

Instead of writing: ("FileInfoBlock structure is a special dos
structure which will be explained in the following chapters.)

/* Declare a FileInfoBlock: (WRONG!) x/
struct FileInfoBlock fib;

Introduction 10/ 14

You should write: (Thanks BCPL!)

/* Declare a pointer to a FileInfoBlock structure: =/
struct FileInfoBlock *my_fib_ ptr;

/* Allocate enough memory for a FileInfoBlock structure: =/

/* (OK! This memory will be long word aligned.) */

my_fib_ptr = AllocMem(sizeof(struct FileInfoBlock),
MEMF_ANY | MEMF_CLEAR);

/+ Check if we have allocated the memory successfully: =/
if(my_fib_ptr == NULL)
{

printf ("Not enough memory!\n");

exit (20);

/+ Use the structure as much as you want... =/

/+ Deallocate the memory when we do not need it any more: =/
FreeMem(my_fib_ptr, sizeof(struct FileInfoBlock));

See Example 2 for more information: Read! Run! Edit!

1.11 BCPL Pointers (BPTR)

BCPL POINTERS (BPTR)

The pointers in the BCPL language are called "BPTR"s. Since
BCPL only uses long addresses the pointers consequently only
points to complete long words. The BCPL address 0x0000 is the
address to the first long word in the memory. The next address
is 0x0001 and it points to the second long word, and so on...
When you increase a BCPL pointer by one you move 32 bits
forward (32 bits = 1 long word). Anything a BPTR points to
must therefore be long word aligned (start on a 32 bit

address) .

Normal C pointers are addressing single bytes (8 bits), and
if you increase a C pointer by one you only move 8 bits
foreward.

When you want to convert a BCPL pointer to a C pointer you
consequently multiply the BPTR with four. (The C pointer is
four times larger than the BPTR.)

When you want to convert a C pointer into a BPTR (BCPL pointer)

Introduction 11/14

it is a little bit trickier. To get the addresses right you
simply have to divide the C pointer by four, but the pointer
must also be long word aligned as all things BCPL work with.
You must therefore allocate the memory for the pointer with
help of AllocMem() .

When you have to convert C to and from BCPL pointers you should
use the special macros that are defined in header file
"dos/dos.h". BADDR() converts a BPTR into a C pointer, and
MKBADDR () converts a C pointer into a BPTR.

Synopsis: c_ptr = BADDR(bptr);
c_ptr: (APTR) The function returns a C pointer.

bptr: (BPTR) The BPTR (BCPL pointer) you want to convert
into a C pointer.

Synopsis: bptr = MKBADDR(c_ptr);
bptr: (APTR) The function returns a BPTR (BCPL pointer).

c_ptr: (LONG) The C pointer you want to convert into a BPTR
(BCPL pointer).

NOTE! The address in the pointer will be correctly
converted and can be used by the dos functions.
However, if you ever have to give AmigaDOS the actual
BPTR (not the address in the pointer, but the memory
used to store the address in) it must be long word
aligned! See example 3 for more information:

Read! Run! Edit!

1.12 BCPL Strings (BSTR)

BCPL STRINGS (BSTR)

To make life even more interesting the BCPL language uses a
special type of strings called "BSTRs". A BSTR is a BCPL
pointer to some data. The very first byte of that data area
contains the length of the string, and the following bytes
contain the actual string. Note that these BCPL strings do not
terminate with a NULL sign, so you have to use the first byte
in the string to get the actual length. A BSTR can therefore
never be longer than 255 characters (0 - 255 = one byte).

Picture: BSTR.pic

This BSTR gives you some problems since you can not use normal
string functions like printf () together with BCPL strings. Most
normal string functions expect a NULL sign at the end of the
string, and since BSTRs do not have that the functions simply
do not know when the string ends.

To help you I have therefore written a small function which

Introduction

12/14

you can include in your programs when needed. The function will
copy a BCPL string into a C string which you then can use as
normal. The function needs a BCPL pointer to the string that
should be converted, a pointer to a normal string where the
data should be inserted, and finally the maximum length of the
C string.

See Example 4 for more information: Read! Edit!

1.13 Boolean Values Used by AmigaDOS

BOOLEAN VALUES USED BY AMIGADOS

Many of the functions which will be described in the following
chapters return boolean values. A boolean value is a value
which is either true or false, and false usualy means that the
function failed to do what it was supposed to do.

Whenever you want to use a boolean varaible in normal
circomstances you should declare it as "BOOL". "BOOL" is
defined in header file "exec/types.h", and is actually a
"short". A boolean variable should then only be given the
values "TRUE" or "FALSE" which are alse defined in the same
header file ("exec/types.h") as 1 and O.

A small demonstration on how to work with boolean wvalues
normally:

/* Declare a boolean variable: x/
BOOL my_boolean_variable;

/* Give the boolean variable a value: */
/* (Only TRUE or FALSE may be used!) «/
my_boolean_variable = TRUE;

/+ An example on how to use it: =/
if (my_boolean_variable)

printf ("True!\n");
else

printf("False!\n");

Well, this is how you work with boolean values normally.
However, as life, nothing is only black and white, true or
false. The boolean values used by AmigaDOS are NOT (!) of the
type "short", nor is the "TRUE" value defined equally
(sight...).

The boolean values used by the AmigaDOS functions are of the
type "LONG" ("long"), and instead of using the normal TRUE or
FALSE values you should use "DOSTRUE" and "DOSFALSE" which are
defined in header file "dos/dos.h" as -1L and OL. Note the
difference between "TRUE" (defined as 1) and "DOSTRUE" (defined
as —-1L).

Introduction

13/14

Whenever you use AmigaDOS functions which return boolean values
you must store the returned value in a "LONG", and be careful
to use the "DOSTRUE" and "DOSFALSE" names and not "TRUE" or
"FALSE"!

/* Simple boolean variable used by AmigaDOS: =*/
LONG ok;

/* Call some AmigaDOS function which =*/
/* returns a boolean value: */
ok = SomeAmigaDOSFunction(xxx);

/* INCORRECT! =/
if(ok == TRUE)
XXX;

/* Correct! =*/
if (ok == DOSTRUE)

XXX ;

/* INCORRECT (but will work since "FALSE" x/

/+ and "DOSFALSE" are bot equal to 0.) */
if(ok == FALSE)
XXX;

/* Correct! =*/
if (ok == DOSFALSE)
XXX

/* Correct! (A simple solution to get =/
/+ rid of most problems...) %/
if(ok)

XXX;

1.14 Examples

EXAMPLES

Example 1: Read! Run! Edit!
This short example examines the Dos library and prints the
current version and revision number.

Example 2: Read! Run! Edit!
This example demonstrates how to allocate some memory which
has to be long word aligned. We will allocate a FileInfoBlock
structure in this example, but the procedure of allocating
long word aligned memory is the same for all types of
objects.

Example 3: Read! Run! Edit!
For experienced users only! This example demonstrates how
to create a long word aligned BPTR. The actual BPTR (the
memory used to store the BPTR address in) is long word

Introduction 14 /14

aligned. This is rarely needed since you normally only
work with addresses to data blocks which have to be long
word aligned. However, if you ever have to give AmigaDOS
an actual BPTR (not a BPTR address, but the BPTR itself)
you need to allocate it as described in this example.

Example 4: Read! Edit!
This example contains a useful function which converts hard
to use BSTR (BCPL stings) into normal easy to use C strings.
This example is not directly runnable and must instead be
linked together with some other program.

	Introduction
	Chapter 1 - Introduction
	Commonly Used AmigaDOS Words
	Physical Devices
	Volumes
	Directories/Subdirectories/Files
	Logical Devies
	Physical/Logical Devices & Volumes
	Dos Library
	BCPL
	Long Word Aligned Structures
	BCPL Pointers (BPTR)
	BCPL Strings (BSTR)
	Boolean Values Used by AmigaDOS
	Examples

